

TEMPERATURE MEASURING WITH THERMOWELL

www.aramakco.com

Introductions

Aramak thermowells are available for light duty applications, high pressures, high temperatures, or high velocity applications; as well as meeting many general service industry needs. Selected on the basis of pressure, temperature, flow, vibration and corrosion parameters. The threaded type is generally the least costly and most versatile. Also available are custom thermo wells for unique applications. Proper thermo well selection is critical to most applications. To configure an ARAMAK thermowell part number follow the Selection Part.

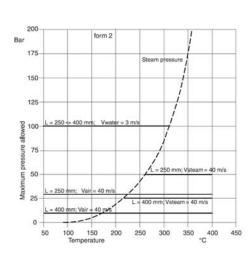
Thermowell Selection

Operating Conditions Process Temperature

- 316L/1.4404 -200 ~ 800°C
- 316Ti/1.4571 -200 ~ 850°C
- Hastelloy C -200 ~ 1300°C.
- Alumina 1600°C.

Maximum Process Pressure

The pressure values to which the thermowell can be subjected at varying temperatures are illustrated in the below. A possible limitation can originate from process connections.


For tubes with a diameter of 9 mm, with a limited flow rate, the thermowell can tolerate the following maximum pressures:

- 50 bar at 20°C
- 33 bar at 250°C
- 24 bar at 400°C.

Maximum Flow Velocity

The highest flow velocity tolerated by the thermowell decreases as the length of the well/probe, exposed to the stream of the fluid, increases.

Some information is provided in the drawing of figures .

Specification

The following designs are available from ARAMAKS standard range of thermowells. However, many organizations have their own standard designs and these can be accommodated by selecting 'other design' and providing a drawing for quotation.

Flanged

Flanged thermowells are available in three manufacturing options:

- •Welded with a fillet and groove welding is perfectly adequate in most circumstances; the weld is designed to be stronger than the required duty pressure.
- •Welded with a full penetration welding provides a stronger weld joint and is specified when absolute assurance of pipe-work integrity is required.
 •Manufactured from a single piece, shaped forging formed to closely resemble the final shape of the finished thermowell. This ensures correct granular alignment of all the thermowell components absolutely vital in ensuring resistance to corrosion cracking.

Weld-in and threaded

Manufactured from a single piece of high quality material, there is no welding in any of ARAMAK's weld-in or threaded designs. Three basic profiles are available:

- Straight: the stem diameter is consistent from the root to the tip
- Tapered: the profile tapers from the root to the tip
- Stepped: the lower portion of the thermowell steps to a smaller diameter

A version of the stepped profile is available in the DIN designs where the step is a taper towards the tip.

Velocity collars

There are times when thermowell design fails to satisfy ASME PTC19.3 2010 TW criteria. Under these circumstances, it is advisable to shorten the thermowell and change the diameters of the stem root and tip. ARAMAK engineers are available to advise on this. Where the thermowell would become too short, a velocity collar can be used.

Dimension

The key dimensions of a thermowell are related to the stem. The dimensions of the flange or screw thread are given by international standards.

Immersion length (U)

the length of the thermowell from the underside of the flange to the tip. This is the unsupported length of the thermowell and, in the case of a threaded thermowell, is measured from the start of the screw thread. In the case of a threaded, tapered thermowell, it is normally measured 10 mm (4 in.) in from the start of the thread and for a threaded, parallel thermowell it is measured from the back of the thread.

External length (T)

the additional length of the thermowell.

U + T gives the total length of the thermowell.

Tip diameter (P1)

the diameter of the stem at the tip (the part of the thermowell furthest from the process connection).

Stem diameter (P2)

the diameter of the stem on the process side of the connection (also referred to as the stem root).

Instrument connection diameter (P3)

the diameter of the stem where it connects to the instrument.

Internal bore

the diameter of the hole in the stem.

Step position

the distance from the tip to the beginning of the step. A stepped thermowell is a straight thermowell with a step down to a smaller diameter near the tip. A number of the DIN designs taper from the stepped position to the tip diameter.

Velocity collar position

the position from the tip to the underside of the velocity collar.

Velocity collar diameter

the diameter of the velocity collar (specified to the nearest millimeter).

Tip thickness

the standard tip thickness is 6 mm.

Note. If a different tip thickness is required, it must be specified when ordering. Failure to specify will result in the order being completed with the standard 6 mm tip thickness.

Materials

Aramak can manufacture thermowells from almost any commercially available material. If the material required is not in the following list, contact ARAMAK for advice.

316/316L stainless steel

the most commonly used material for thermowells combining excellent corrosion resistance with good strength and availability.

321 stainless steel

offers similar properties to 316 and 316Ti but is more suitable for operation at higher temperatures.

Hastelloy C-276

a material favored for chloride atmospheres and processes. 300 series stainless steels are not recommended for use in high chloride and low oxygen environments.

Inconel 600

a high nickel alloy containing chromium suitable for use at high temperatures and in both oxidizing and reducing atmospheres.

Monel 400

a high nickel alloy containing copper highly resistant to corrosion in a wide variety of environments.

Duplex

a stainless steel designed specifically for use in salt water environments where it offers excellent corrosion resistance.

Super duplex

a variant of duplex steel that includes a small amount of copper – preferred over duplex for its enhanced high temperature properties.

ASME PTC 19.3 2010 TW stress calculations

The only published international code for the evaluation of the stresses placed on thermowells in service. ARAMAK engineers can perform a calculation to the ASME code on request.

Certification is supplied when requested.

X-ray fluorescence PMI

When absolute verification of the material supplied is required, ARAMAK can perform an in-house X-ray fluorescence examination. This technique provides a quantitative analysis of the heavy elements in the chemical makeup of the material.

Pressure testing

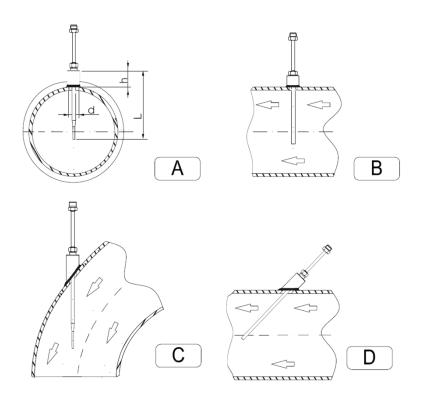
Two types of hydrostatic pressure test are offered by ARAMAK:

- External tests the thermowell with pressure applied externally to the thermowell at 1.5 times the flange rating.
- •Internal tests the thermowell internally for leaks.

Installation

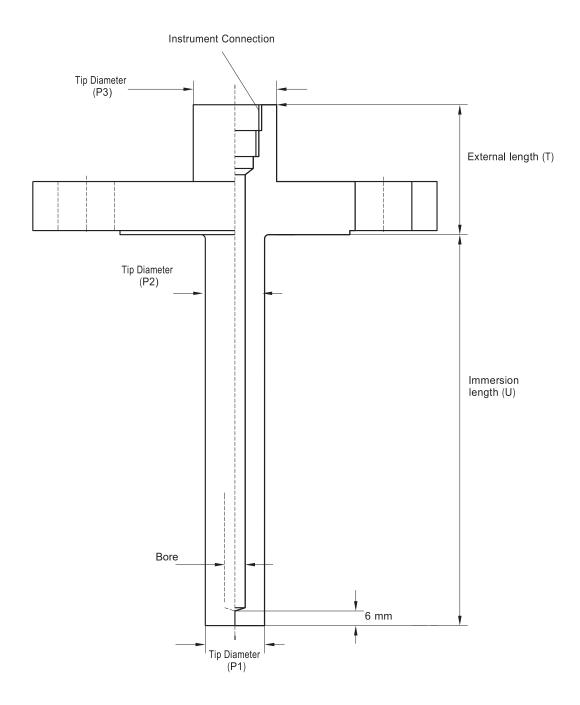
The Thermometer shall assembles on Thermowell can mounted on the wall of pipes or vessels or other plant parts that may require them.

The interface components for the process connection and the related gaskets are not normally provided with the sensors and must be purchased by the customer.


Immersion length may influence the accuracy of the measurement. If the immersion length is too low, an error may be generated in the temperature recorded due to the lower temperature of the process fluid near to the walls and heat transfer, which takes place through the sensor stem. The incidence of such an error can be relevant if there is a large difference between the process temperature and ambient temperature. In order to avoid this source of inaccuracy, the thermowell should have a small diameter

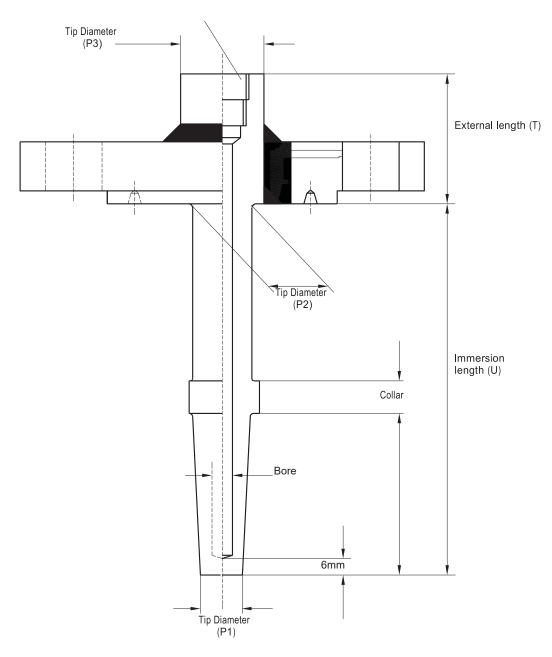
and the immersion length (L) should be, if possible, at least 80÷100 mm.

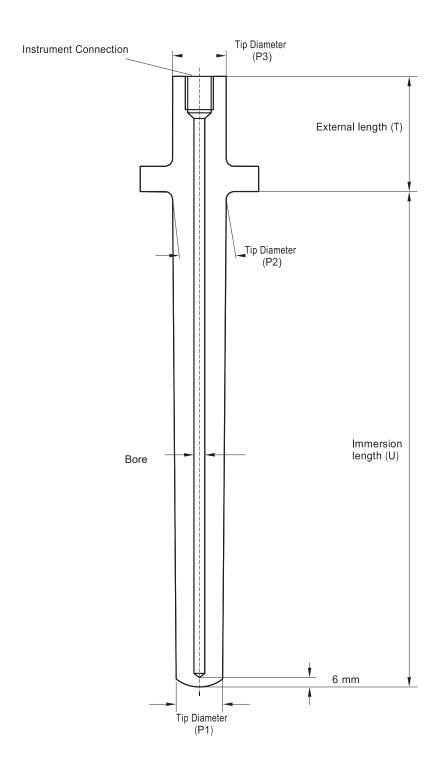
For pipes with a small section, it is necessary to make sure that the tip of the probe reaches or slightly exceeds, if possible, the axis line of the duct (see fig. A-B). Insulation of the outer part of the sensor reduces the effect produced by a low immersion length. Another solution may be a tilted installation (see fig. C-D). For use in the food industry, it is best to follow the rule h <= d/2.

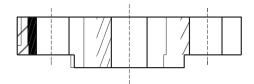

With regard to corrosion, the base material of the wetted parts (SS 316L/1.4404, SS 316Ti/1.4571, Hastelloy C) can tolerate the common corrosive media right up to even the highest temperatures.

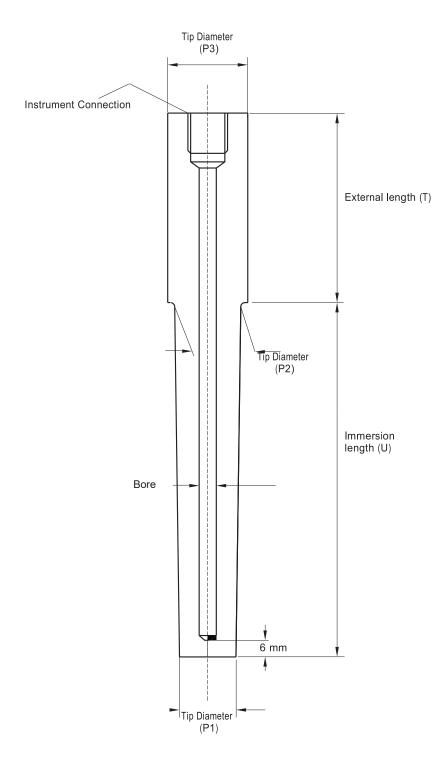
For further information on specific applications, please contact the ARAMAK Customer Service.

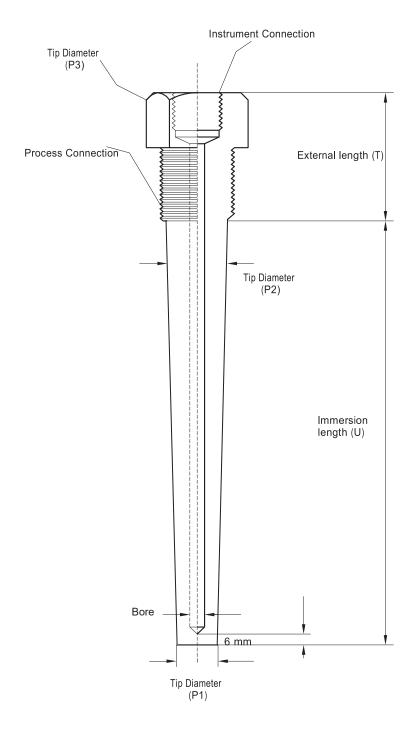
Flanged, Straight


Flanged, Tappered


Flanged - Collar


Instrument Connection


Van Stone - V



Welded – W

Thread - T

Ordering Information

Thermowell design	XXX	XXXX	XX	XX	XXX	Х	XX	XX	ХХ	XX	ХХ	XXX	XX
Flanged, straight	FSW												
Flanged, tapered	FTW												
Flanged, stepped	FPW												
Flanged, straight, full penetration	FSP												
Flanged, tapered, full penetration	FTP												
Flanged, stepped, full penetration	FPP												
Flanged, straight with velocity collar	FSV												
Flanged, tapered with velocity collar	FTV												
Flanged, stepped with velocity collar	FPV												
Van Stone, straight	VSS												
Van Stone, tapered	VTS												
Van Stone, stepped	VPS												
Weld-in, straight	WSS												
Weld-in, tapered	WTS												
Weld-in, stepped	WPS												
Threaded, straight	TSS												
Threaded, tapered	TTS												
Threaded, stepped	TPS												
Flanged welded Pipe, straight	FWP												
Threaded welded Pipe, straight	TWP												
Other	ОТН												
Immersion length (U)													
mm (100 to 9999 mm)		XXXX											
Thermowell material													
Stainless steel 316L			S1										
Stainless steel 316Ti			S2										
Stainless steel 321			S3										
Stainless steel 310			S4										
Stainless steel 304L			S5										
Hastelloy C-276			H1										
Monel 400			H2										
Inconel 600			Н3										
Duplex			Н4										
Super duplex			H5										
Titanium			Н6										
Others			Н7										
Flanged material													
Stainless steel 316L				S1									
Stainless steel 316Ti				S2									
Stainless steel 321				S3									
Stainless steel 310				S4									
Stainless steel 304L				S5									
Hastelloy C-276				H1									
Monel 400				H2									

Ordering Information

Inconel 600	НЗ					
Duplex	H4					
Super duplex	H5					
Titanium	Н6					
Others	H7					
Process connection type						
None		Y0				
Flanged 1 in. ASME B16.5 CL 150 RF		F10				
Flanged 1 in. ASME B16.5 CL 300 RF		F11				
Flanged 1 in. ASME B16.5 CL 600 RF		F12				
Flanged 1 in. ASME B16.5 CL 600 RTJ		F13				
Flanged 1 in. ASME B16.5 CL 900 RF		F14				
Flanged 1 in. ASME B16.5 CL 900 RTJ		F15				
Flanged 1 in. ASME B16.5 CL 1500 RF		F16				
Flanged 1 in. ASME B16.5 CL 1500 RTJ		F17				
Flanged 11/2 in. ASME B16.5 CL 150 RF		F18				
Flanged 11/2 in. ASME B16.5 CL 300 RF		F19				
Flanged 11/2 in. ASME B16.5 CL 600 RF		F20				
Flanged 11/2 in. ASME B16.5 CL 600 RTJ		F21				
Flanged 11/2 in. ASME B16.5 CL 900 RF		F22				
Flanged 11/2 in. ASME B16.5 CL 900 RTJ		F23				
Flanged 11/2 in. ASME B16.5 CL 1500 RF		F24				
Flanged 11/2 in. ASME B16.5 CL 1500 RTJ		F25				
Flanged 11/2 in. ASME B16.5 CL 2500 RTJ		F26				
Flanged 2 in. ASME B16.5 CL 150 RF		F27				
Flanged 2 in. ASME B16.5 CL 300 RF		F28				
Flanged 2 in. ASME B16.5 CL 600 RF		F29				
Flanged 2 in. ASME B16.5 CL 600 RTJ		F30				
Flanged 2 in. ASME B16.5 CL 900 RF		F31				
Flanged 2 in. ASME B16.5 CL 900 RTJ		F32				
Flanged 2 in. ASME B16.5 CL 1500 RF		F33				
Flanged 2 in. ASME B16.5 CL 1500 RTJ		F34				
Flanged 2 in. ASME B16.5 CL 2500 RTJ		F35				
Flanged DN 25 EN1092 PN 10		P1				
Flanged DN 25 EN1092 PN 16		P2				
Flanged DN 25 EN1092 PN 40		Р3				
Flanged DN 40 EN1092 PN 10		P4				
Flanged DN 40 EN1092 PN 16		P5				
Flanged DN 40 EN1092 PN 40		P6				
Flanged DN 50 EN1092 PN 10		P7				
Flanged DN 50 EN1092 PN 16		P8				
Flanged DN 50 EN1092 PN 40		P9				
Threaded M20 x 1.5		T1				
Threaded M27 x		T2				
Threaded 1/2 in. NPT		T3				

Ordering Information

Threaded 3/4 in. NPT	T4								
Threaded 1 in. NPT	T5								
Others	01								
Instrument connection									
1/2 in. NPT (standard)		1							
1/2 in. G		2							
M20 x 1.5		3							
Other		4							
External length (T)		•							
mm (20 to 99 mm)			XX						
Instrument connection diameter (P3)			•						
30mm				30					
35 mm				35					
40 mm	40 mm								
Others				XX					
Stem diameter (P2)									
(mm)					XX				
Tip diameter (P1)					•				
(mm)						XX			
Internal bore									
4							10		
7							11		
8							12		
10							13		
13							14		
Other							15		
Step position									
None								X00	
(mm)								XXX	
Additional Options									
Material Certificate									N1
NACE Certificate									N2
Dimension Report									D1
Drawing Document									D2
Plug & chain									D3
Helium leak testing									U1
Pressure test external (water)									U2
Pressure test internal (water)									U3
Radiograph process connection									W1
Weld location report									W2
Weld qualification report									W3
Wake frequency calculation									W4
Hardness report									Н1

Contact us

Instrumentation manufacturer & designer

Tel: 021-46069694

Aramakco.com
Info@aramakco.com
Sales@aramakco.com